organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-4-(Tosyloxymethyl)cyclohexanecarboxylic acid

De-Hong Jiang,^a Zhi-Hua Mao^b and Hu Zheng^a*

^aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, and ^bThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: wcums416@yahoo.com.cn

Received 18 January 2008; accepted 29 January 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.130; data-to-parameter ratio = 14.9.

The title compound, $C_{15}H_{20}O_5S$, is an intermediate in the synthesis of novel aminocarboxylic acid derivatives. The cyclohexane ring exhibits a chair conformation. In the crystal structure, adjacent molecules form dimers via O-H···O hydrogen bonds.

Related literature

For the use of aminocarboxylic acid derivatives as anti-ulcer agents, see: Hoshina et al. (1984). For related structures, see: Qi et al. (2008); van Koningsveld et al. (1972).

Experimental

Crystal data

$C_{15}H_{20}O_5S$	$V = 1585.1 (10) \text{ Å}^3$
$M_r = 312.37$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.545 (4) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 10.085 (3) Å	T = 291 (2) K
c = 12.654 (6) Å	$0.45 \times 0.40 \times 0.38$
$\beta = 98.05 \ (3)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: none 4142 measured reflections 2931 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	197 parameters
$wR(F^2) = 0.130$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
2931 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

K × 0.38 mm

1794 reflections with $I > 2\sigma(I)$

3 standard reflections

every 250 reflections

intensity decay: 0.8%

 $R_{\rm int} = 0.004$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $05-H5\cdots04^{i}$ 0.82 1.83 2.642 (3) 173

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2098).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting, Abstract PA 104.
- Hoshina, K., Yamazaki, Y., Takeshita, T. & Naruchi, T. (1984). IUPHAP 9th International Congress of Pharmacology, p. 697. London.
- Koningsveld, H. van (1972). Acta Cryst. B28, 1189-1195.
- Qi, Q.-R., Huang, W.-C. & Zheng, H. (2008). Acta Cryst. E64, 0405.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, 0598 [doi:10.1107/S1600536808003176]

cis-4-(Tosyloxymethyl)cyclohexanecarboxylic acid

D.-H. Jiang, Z.-H. Mao and H. Zheng

Comment

Some aminocarboxylic acid derivatives are used as anti-ulcer agents (Hoshina *et al.*, 1984). To find new anti-ulcer agents, a series of *trans/cis*-cyclohexanecarboxylic acid derivatives were designed and synthesized.

In this paper, we want to report the synthesis and structure of the title compound, *cis*-4-(tosyloxymethyl)cyclohexanecarboxylic acid.

The cyclohexane ring exhibits a chair conformation and the cyclohexane C—C bond lengths and C—C—C endocyclic angles are in the range found for similar compounds (van Koningsveld, 1972) (Fig.1). They agree well with those of *trans*-4-(tosyloxymethyl)cyclohexanecarboxylic acid (Qi *et al.*, 2008).

In the crystal structure, two molecules form centrosymmetric dimers via O-H…O hydrogen bonds (Fig. 2).

Experimental

cis-4-(Methoxycarboxyl)cyclohexanemethanol (10 mmol), pyridine (11 mmol) and a small amount of 4-dimethylaminopyridine were dissolved in dichloromethane (20 ml), then *p*-toluenesulfonyl chloride (11 mmol) was added dropwise with vigorous stirring at room temperature. After 8 h the reaction was quenched by addition of water and the organic layer separated was evaporated under vacuum, the solid obtained was hydrolyzed in a mixed solution of methanol and aqueous NaOH (11 mmol) for 4 h at 323 K. The title compound was then obtained by acidification with hydrochloric acid followed by recrystallization from ethyl acetate. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation in ethyl acetate at room temperature.

Refinement

The H atoms were placed in the calculated positions in the riding model approximation with C—H = 0.93 (aromatic-H) and 0.96 (methyl-H), O—H = 0.82 Å (hydroxyl) and with $U_{iso}(H) = 1.2U_{eq}(aromatic-C)$ and $1.5U_{eq}(methyl-C, hydroxyl)$. Methyl and hydroxyl H atoms were allowed to rotate around the C—C and C—O axis but not to tilt to best fit the experimental electron density.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. Packing diagram of the title compound.

cis-4-(Tosyloxymethyl)cyclohexanecarboxylic acid

Crystal data

$C_{15}H_{20}O_5S$	$F_{000} = 664$
$M_r = 312.37$	$D_{\rm x} = 1.309 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 12.545 (4) Å	Cell parameters from 43 reflections
<i>b</i> = 10.085 (3) Å	$\theta = 4.4 - 7.3^{\circ}$
c = 12.654 (6) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 98.05 \ (3)^{\circ}$	T = 291 (2) K
$V = 1585.1 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.45 \times 0.40 \times 0.38 \text{ mm}$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.004$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.6^{\circ}$
T = 291(2) K	$h = -15 \rightarrow 15$
$\omega/2\theta$ scans	$k = 0 \rightarrow 12$
Absorption correction: none	$l = -6 \rightarrow 15$
4142 measured reflections	3 standard reflections
2931 independent reflections	every 250 reflections
1794 reflections with $I > 2\sigma(I)$	intensity decay: 0.8%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 0.1341P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.130$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
2931 reflections	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
197 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0109 (15)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.88825 (5)	1.11227 (6)	0.13440 (6)	0.0571 (2)
01	0.86629 (16)	1.13334 (18)	0.24047 (15)	0.0714 (6)
O2	0.92693 (13)	0.96607 (16)	0.12094 (14)	0.0587 (5)
O3	0.96662 (14)	1.19132 (18)	0.09296 (16)	0.0734 (6)
O4	0.61080 (15)	0.4878 (2)	0.08885 (17)	0.0756 (6)
O5	0.60020 (17)	0.5097 (3)	-0.08567 (17)	0.0921 (7)
H5	0.5356	0.5095	-0.0812	0.138*
C1	0.6708 (2)	1.1419 (3)	0.0859 (2)	0.0655 (7)
H1	0.6689	1.1457	0.1591	0.079*
C2	0.5771 (2)	1.1563 (3)	0.0140 (3)	0.0768 (9)
H2	0.5122	1.1706	0.0399	0.092*
C3	0.5778 (2)	1.1499 (3)	-0.0942 (3)	0.0718 (8)
C4	0.6745 (3)	1.1276 (3)	-0.1305 (2)	0.0744 (8)
H4	0.6763	1.1214	-0.2035	0.089*
C5	0.7684 (2)	1.1143 (3)	-0.0613 (2)	0.0673 (7)
H5A	0.8331	1.1002	-0.0876	0.081*

C6	0.7667 (2)	1.1218 (2)	0.0466 (2)	0.0517 (6)
C7	0.4746 (3)	1.1693 (4)	-0.1705 (3)	0.1080 (12)
H7A	0.4173	1.1920	-0.1309	0.162*
H7B	0.4569	1.0887	-0.2094	0.162*
H7C	0.4843	1.2394	-0.2196	0.162*
C8	0.8744 (2)	0.8621 (2)	0.1757 (2)	0.0574 (7)
H8A	0.8005	0.8870	0.1802	0.069*
H8B	0.9116	0.8509	0.2477	0.069*
C9	0.87667 (18)	0.7337 (2)	0.11476 (18)	0.0475 (6)
Н9	0.9516	0.7140	0.1065	0.057*
C10	0.8351 (2)	0.6228 (2)	0.1803 (2)	0.0537 (6)
H10A	0.8800	0.6170	0.2490	0.064*
H10B	0.7623	0.6434	0.1926	0.064*
C11	0.8356 (2)	0.4903 (2)	0.1233 (2)	0.0628 (7)
H11A	0.9095	0.4643	0.1201	0.075*
H11B	0.8036	0.4237	0.1644	0.075*
C12	0.7748 (2)	0.4936 (3)	0.0110 (2)	0.0618 (7)
H12	0.7914	0.4111	-0.0242	0.074*
C13	0.8138 (2)	0.6083 (3)	-0.0531 (2)	0.0620(7)
H13A	0.8869	0.5905	-0.0659	0.074*
H13B	0.7687	0.6138	-0.1218	0.074*
C14	0.81088 (19)	0.7401 (2)	0.00422 (18)	0.0509 (6)
H14A	0.7369	0.7627	0.0108	0.061*
H14B	0.8396	0.8090	-0.0373	0.061*
C15	0.6550(2)	0.4981 (2)	0.0095 (2)	0.0608 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S 1	0.0529 (4)	0.0520 (4)	0.0648 (5)	-0.0071 (3)	0.0025 (3)	-0.0085 (3)
01	0.0762 (13)	0.0768 (13)	0.0589 (12)	-0.0026 (10)	0.0017 (10)	-0.0190 (9)
O2	0.0526 (10)	0.0551 (10)	0.0697 (12)	-0.0066 (8)	0.0133 (9)	-0.0022 (8)
O3	0.0561 (12)	0.0641 (11)	0.0990 (15)	-0.0186 (9)	0.0074 (10)	0.0001 (10)
O4	0.0562 (12)	0.1058 (16)	0.0645 (13)	-0.0209 (10)	0.0070 (10)	-0.0001 (11)
05	0.0640 (13)	0.139 (2)	0.0713 (14)	-0.0219 (14)	0.0036 (11)	0.0193 (13)
C1	0.0573 (17)	0.0739 (18)	0.0659 (18)	-0.0063 (14)	0.0111 (15)	-0.0126 (14)
C2	0.0484 (17)	0.091 (2)	0.091 (2)	-0.0003 (15)	0.0110 (16)	-0.0210 (18)
C3	0.0640 (19)	0.0699 (18)	0.077 (2)	-0.0004 (14)	-0.0058 (17)	-0.0145 (15)
C4	0.076 (2)	0.089 (2)	0.0558 (18)	0.0038 (17)	0.0018 (16)	-0.0006 (15)
C5	0.0593 (17)	0.0799 (19)	0.0640 (19)	0.0029 (14)	0.0128 (15)	-0.0006 (14)
C6	0.0525 (15)	0.0462 (13)	0.0558 (15)	-0.0047 (11)	0.0055 (12)	-0.0056 (11)
C7	0.077 (2)	0.130 (3)	0.106 (3)	0.012 (2)	-0.025 (2)	-0.018 (2)
C8	0.0589 (16)	0.0625 (16)	0.0506 (15)	-0.0092 (12)	0.0071 (13)	0.0009 (12)
C9	0.0410 (13)	0.0525 (13)	0.0482 (14)	-0.0033 (11)	0.0035 (11)	0.0020 (11)
C10	0.0464 (14)	0.0613 (15)	0.0517 (14)	-0.0021 (12)	0.0010 (11)	0.0106 (12)
C11	0.0499 (15)	0.0558 (15)	0.082 (2)	0.0018 (12)	0.0072 (14)	0.0111 (13)
C12	0.0616 (17)	0.0529 (14)	0.0721 (19)	-0.0055 (12)	0.0138 (14)	-0.0088 (12)
C13	0.0559 (15)	0.0810 (18)	0.0511 (15)	-0.0119 (14)	0.0144 (13)	-0.0095 (14)

C14	0.0487 (14)	0.0576 (14)	0.0466 (14)	-0.0070 (11)	0.0070 (11)	0.0062 (11)
C15	0.0596 (17)	0.0564 (15)	0.0647 (19)	-0.0165 (13)	0.0023 (15)	0.0002 (13)
Geometric para	meters (Å, °)					
S1—O3		1.4218 (18)	C7—H	H7C	0.90	500
S101		1.423 (2)	C8—C	29	1.5	0 (3)
S1—O2		1.5688 (18)	C8—H	18A	0.9	700
S1—C6		1.759 (3)	C8—H	18B	0.97	700
O2—C8		1.464 (3)	С9—С	214	1.52	23 (3)
O4—C15		1.217 (3)	С9—С	210	1.52	26 (3)
O5—C15		1.306 (3)	С9—Н	19	0.98	300
O5—H5		0.8200	C10—	·C11	1.51	19 (3)
C1—C6		1.380 (4)	C10—	H10A	0.97	700
C1—C2		1.390 (4)	C10—	H10B	0.97	700
C1—H1		0.9300	C11—	C12	1.51	16 (4)
С2—С3		1.372 (4)	C11—	H11A	0.97	700
С2—Н2		0.9300	C11—	H11B	0.97	700
C3—C4		1.374 (4)	C12—	·C15	1.50	01 (4)
С3—С7		1.515 (4)	C12—	·C13	1.53	32 (4)
C4—C5		1.372 (4)	C12—	·H12	0.98	300
C4—H4		0.9300	C13—	·C14	1.5	17 (3)
C5—C6		1.371 (4)	C13—	H13A	0.97	700
C5—H5A		0.9300	C13—	H13B	0.97	700
C7—H7A		0.9600	C14—	H14A	0.97	700
С7—Н7В		0.9600	C14—	H14B	0.97	700
O3—S1—O1		119.95 (12)	C8—C	С9—С10	108	.55 (19)
O3—S1—O2		104.28 (11)	C14—	C9—C10	110	.34 (18)
O1—S1—O2		110.26 (11)	C8—C	С9—Н9	108	.4
O3—S1—C6		108.65 (12)	C14—	С9—Н9	108	.4
O1—S1—C6		108.78 (13)	C10—	С9—Н9	108	.4
O2—S1—C6		103.69 (10)	C11—	C10—C9	111	.2 (2)
C8—O2—S1		117.09 (15)	C11—	C10—H10A	109	.4
С15—О5—Н5		109.5	С9—С	C10—H10A	109	.4
C6—C1—C2		118.7 (3)	C11—	C10—H10B	109	.4
C6-C1-H1		120.7	С9—С	C10—H10B	109	.4
C2—C1—H1		120.7	H10A-		108	.0
C3—C2—C1		121.7 (3)	C12—	C11—C10	113	.0 (2)
C3—C2—H2		119.2	C12—	C11—H11A	109	.0
C1—C2—H2		119.2	C10—	C11—H11A	109	.0
C2—C3—C4		118.1 (3)	C12—	C11—H11B	109	.0
C2—C3—C7		120.3 (3)	C10—	C11—H11B	109	.0
C4—C3—C7		121.6 (3)	H11A-		107	.8
C5—C4—C3		121.5 (3)	C15—	C12—C11	112	.6 (2)
С5—С4—Н4		119.3	C15—	C12—C13	111	.4 (2)
С3—С4—Н4		119.3	C11—	C12—C13	110	.9 (2)
C6—C5—C4		119.9 (3)	C15—	C12—H12	107	.2
С6—С5—Н5А		120.1	C11—	С12—Н12	107	.2
C4—C5—H5A		120.1	C13—	C12—H12	107	.2

C5—C6—C1	120.2 (3)	C14—C13—C12	112.2 (2)
C5—C6—S1	119.5 (2)	C14—C13—H13A	109.2
C1—C6—S1	120.2 (2)	С12—С13—Н13А	109.2
С3—С7—Н7А	109.5	C14—C13—H13B	109.2
С3—С7—Н7В	109.5	C12—C13—H13B	109.2
H7A—C7—H7B	109.5	H13A—C13—H13B	107.9
С3—С7—Н7С	109.5	C13—C14—C9	110.81 (19)
H7A—C7—H7C	109.5	C13—C14—H14A	109.5
H7B—C7—H7C	109.5	C9—C14—H14A	109.5
O2—C8—C9	109.29 (19)	C13—C14—H14B	109.5
O2—C8—H8A	109.8	C9—C14—H14B	109.5
С9—С8—Н8А	109.8	H14A—C14—H14B	108.1
O2—C8—H8B	109.8	O4—C15—O5	121.8 (3)
С9—С8—Н8В	109.8	O4—C15—C12	123.9 (3)
H8A—C8—H8B	108.3	O5-C15-C12	114.3 (3)
C8—C9—C14	112.73 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H5···O4 ⁱ	0.82	1.83	2.642 (3)	173
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

Fig. 1

